3 items tagged "Self-service BI"

  • Business Intelligence Trends for 2017

    businessintelligence 5829945be5abcAnalyst and consulting firm, Business Application Research Centre (BARC), has come out with the top BI trends based on a survey carried out on 2800 BI professionals. Compared to last year, there were no significant changes in the ranking of the importance of BI trends, indicating that no major market shifts or disruptions are expected to impact this sector.
     
    With the growing advancement and disruptions in IT, the eight meta trends that influence and affect the strategies, investments and operations of enterprises, worldwide, are Digitalization, Consumerization, Agility, Security, Analytics, Cloud, Mobile and Artificial Intelligence. All these meta trends are major drivers for the growing demand for data management, business intelligence and analytics (BI). Their growth would also specify the trend for this industry.The top three trends out of 21 trends for 2017 were:
    • Data discovery and visualization,
    • Self-service BI and
    • Data quality and master data management
    • Data labs and data science, cloud BI and data as a product were the least important trends for 2017.
    Data discovery and visualization, along with predictive analytics, are some of the most desired BI functions that users want in a self-service mode. But the report suggested that organizations should also have an underlying tool and data governance framework to ensure control over data.
     
    In 2016, BI was majorly used in the finance department followed by management and sales and there was a very slight variation in their usage rates in that last 3 years. But, there was a surge in BI usage in production and operations departments which grew from 20% in 2008 to 53% in 2016.
     
    "While BI has always been strong in sales and finance, production and operations departments have traditionally been more cautious about adopting it,” says Carsten Bange, CEO of BARC. “But with the general trend for using data to support decision-making, this has all changed. Technology for areas such as event processing and real-time data integration and visualization has become more widely available in recent years. Also, the wave of big data from the Internet of Things and the Industrial Internet has increased awareness and demand for analytics, and will likely continue to drive further BI usage in production and operations."
     
    Customer analysis was the #1 investment area for new BI projects with 40% respondents investing their BI budgets on customer behavior analysis and 32% on developing a unified view of customers.
    • “With areas such as accounting and finance more or less under control, companies are moving to other areas of the enterprise, in particular to gain a better understanding of customer, market and competitive dynamics,” said Carsten Bange.
    • Many BI trends in the past, have become critical BI components in the present.
    • Many organizations were also considering trends like collaboration and sensor data analysis as critical BI components. About 20% respondents were already using BI trends like collaboration and spatial/location analysis.
    • About 12% were using cloud BI and more were planning to employ it in the future. IBM's Watson and Salesforce's Einstein are gearing to meet this growth.
    • Only 10% of the respondents used social media analysis.
    • Sensor data analysis is also growing driven by the huge volumes of data generated by the millions of IoT devices being used by telecom, utilities and transportation industries. According to the survey, in 2017, the transport and telecoms industries would lead the leveraging of sensor data.
    The biggest new investments in BI are planned in the manufacturing and utilities industries in 2017.
     
    Source: readitquick.com, November 14, 2016
  • Self-service BI platformen: Domo of Tableau?

    Self-service BI platformen: Domo of Tableau?

    Business intelligence (BI) en analytische platforms zijn al lang een belangrijk onderdeel van het bedrijfsleven, maar dankzij de opkomst van self-service BI-tools is de verantwoordelijkheid voor analyse verschoven van IT naar businessanalisten, met ondersteuning van datawetenschappers en databasebeheerders.

    Als gevolg daarvan is BI veranderd van het genereren van maandelijkse rapportages uit het registratiesysteem, naar het interactief ontdekken en delen van trends, voorspellingen en antwoorden op bedrijfsvragen op basis van gegevens uit verschillende interne en externe bronnen. In plaats van maanden nodig te hebben om een beslissing te nemen, kunnen bedrijven die zelfbedienings-BI hebben geïmplementeerd in een paar dagen tijd een beslissing nemen over de te volgen koers.

    Maar het kan lastig zijn om uit te vinden welk self-service BI-platform geschikt is voor jouw organisatie. De beste pasvorm wordt zowel vanuit het oogpunt van de zakelijke gebruikers als vanuit het oogpunt van jouw IT-infrastructuur bepaald.

    Past het BI-platform bij de vaardigheden van de mensen die het zullen gebruiken? Kunnen jouw mensen het gemakkelijk leren en gebruiken? Maakt het de jobs van analisten gemakkelijker, of creëert het meer barrières dan dat het weghaalt?

    Is het in staat om al jouw interne en externe gegevensbronnen te lezen? Kan je jouw gegevens gemakkelijk opschonen en transformeren binnen het platform? Kan je jouw analyses delen met iedereen in het bedrijf, of alleen met gelicentieerde gebruikers?

    Domo en Tableau zijn twee van de zwaargewichten van self-service BI. Hier bekijken we hoe deze twee platformen zich tot elkaar verhouden, en welke factoren van belang kunnen zijn bij het bepalen welke uw organisatie moet kiezen.

    Domo

    Domo is een online BI-tool die een groot assortiment aan dataverbindingen, een ETL-systeem, een uniforme dataopslag, een grote selectie aan visualisaties, geïntegreerde sociale media en rapportages combineert. Domo beweert meer te zijn dan een BI-tool omdat zijn social media-tool kan leiden tot 'actionable insights', maar in de praktijk leidt elke BI-tool ofwel tot (menselijke) acties die het bedrijf ten goede komen ofwel op de vuilnisbelt belandt.

    Domo is een zeer goed en capabel BI-systeem. Het onderscheidt zich door de ondersteuning van veel databronnen en veel grafiektypes, en de geïntegreerde social media functie is mooi. Domo is echter moeilijker te leren en te gebruiken dan Tableau en andere self-service BI-rivalen. Met bijna $2.000 per gebruiker per jaar voor de Professional Edition ($2.280 voor Enterprise) is het ook duurder dan Tableau.

    Afhankelijk van jouw behoeften is Tableau waarschijnlijk een betere keuze dan Domo.

    Tableau

    Tableau beschrijft zijn producten als het aanbieden van 'analyses die werken zoals u denkt' en zegt dat deze tools gebruik maken van 'het natuurlijke vermogen van mensen om snel visuele patronen te herkennen, waardoor zowel alledaagse mogelijkheden als eureka-momenten worden onthuld'. Daar zit een zekere mate van waarheid in, hoewel je bijna hetzelfde zou kunnen zeggen over veel andere BI-tools.

    De visuele ontdekkingsfase van de analyseworkflow is het sexy gedeelte, maar het is niet waar de meeste mensen het grootste deel van hun tijd doorbrengen. Mijn ervaring is dat het importeren en conditioneren van de gegevens gemakkelijk 80% van de tijd die je met een BI-product doorbrengt kan kosten.

    Nu Tableau cross-database verbindingen kan maken, ben je waarschijnlijk van plan om meerdere gegevensbronnen te importeren en te verbinden, hoewel je misschien de meeste van hen ondergebracht hebt in een datawarehouse, als jouw bedrijf groot (of rijk) genoeg is om er een te hebben.

    Dan zal je jouw gegevens willen filteren en conditioneren op een rij-voor-rij-basis. Tot slot zal je op het punt komen dat je daadwerkelijk kunt beginnen met het maken van visualisaties, hoewel het niet ongebruikelijk is om extra datatransformaties te moeten uitvoeren terwijl je probeert jouw verkenningstocht te doen. Maar dataconditionering en -transformatie zijn in Tableau gemakkelijk te realiseren, zeker net zo gemakkelijk als in Excel. Het is niet nodig om terug te gaan naar de importfase om berekende velden toe te voegen of de gegevens te filteren.

    Visuele ontdekking in Tableau is krachtig en Tableau heeft de lat hoog gelegd voor de eenvoudig te gebruiken implementatie en fijne controle van de grafiekweergave. Je bouwt een Tableau visualisatie op door te klikken op de afmetingen (meestal discrete categorieën of kenmerken) en maatregelen (numerieke waarden) die van belang zijn, en je kiest zelf een markering (het type weergave, zoals balken, lijnen en punten), of met behulp van de automatische markeringsselectie, of met behulp van de 'toon mij' methode voor het selecteren van de visualisatie.

    Voor meer controle kan je afmetingen en maten slepen op specifieke markeringseigenschappen of 'shelves'. Als je begrijpt wat er in jouw analyse gebeurt, kan je dashboards en verhalen met anderen delen. Dat kan eenvoudig worden gedaan door te publiceren naar Tableau Server of Tableau Online, of je nu in Tableau Desktop hebt gewerkt en moet uploaden, of dat je jouw data analyse al online aan het doen was.

    De prijs van Tableau is iets vriendelijker dan Domo en biedt drie verschillende gebruikerslicenties aan op basis van hoe zwaar het gebruik ervan naar verwachting van elke gebruiker zal zijn. Tableau Server: $70 (Creator), $35 (Explorer), $12 (Viewer) per gebruiker per maand; Tableau Online: $70 (Creator), $42 (Explorer), $15 (Viewer) per gebruiker per maand.

    Auteur: Martin Heller

    Bron: CIO

  • Self-service BI: explanation, benefits, features, do's and don'ts

    Self-service BI: explanation, benefits, features, do's and don'ts

    Self-service business intelligence, or BI, has been on the to-do list of many organizations for quite a while.

    Marketed as a tool that allows users from non-technical backgrounds to get insights at the pace of business, self-service BI, however, is leaving many organizations disappointed when it comes to implementing it practically.

    Failure stories abound, with companies never getting what self-service BI has originally promised. That is freedom from IT for line-of-business users to create powerful and accurate reports to drive business growth.

    In this blog, you will find out what self-service BI exactly is, why organizations fail at it, and what steps your company should take to implement a successful self-service BI solution.

    What is self-service BI

    Self-service BI definition

    Self-service BI is often defined as a form of BI that uses simple-to-use BI tools to allow non-tech-savvy business users (sales, finance, marketing, or HR) to directly access data and explore it on their own.

    Self-service BI differs from traditional BI that is owned by the IT or BI department as a centralized function. In the traditional approach, it is these teams that are in charge of everything. They prepare the required data, store and secure it, build data models, create queries, and build visualizations for end-users after collecting their requirements.

    The idea of self-service BI is closely related to data democratization that is focused on letting everyone in an organization access and consume data. The ultimate purpose is to generate more insights at the organization level and drive better business decisions.

    Key benefits of self-service BI

    Faster time to insight

    Shifting control to end-users means skipping time-consuming stages of the traditional BI process. In self-service BI, end-users don’t have to wait for days or even weeks until their report finally goes live after getting through elicitation and approvals. They also don’t have to deal with the tedious change request management process when realizing that more visuals are necessary. This is because they can chop, tweak, and add data on the fly to uncover important trends, patterns, or anomalies.

    Improved operational efficiency

    By empowering business users with thorough domain knowledge to perform their own data analysis on an ad-hoc basis, self-service BI produces better-quality insights while freeing the IT or BI teams from handling routine tasks related to data. Instead, these teams can focus on harder problems like setting up data pipelines to get cleansed and transformed data to the right destination at the right time and maintaining important data governance processes.

    Cost reduction

    Apart from optimizing IT and BI capabilities for time and cost savings, many self-service BI adopters take a step further. They arm subject matter experts with knowledge and tools for performing advanced data analytics. In other words, they raise citizen data scientists who know how to generate ML-driven predictions critical to business. With data science talent coming at a hefty price tag, this kind of investment is probably one of the best a data-driven company can make.

    Core features of self-service BI tools

    To enable the powerful benefits of self-service BI mentioned above, self-service BI tools should have the following essential features:

    • Data connectors that enable self-service BI tool integration with databases, CRM, ERP, marketing analytics, finance software, and other on-prem and cloud systems to serve analytics needs in the most efficient way.
    • Vast reporting capabilities that range from book-quality canned reports with customizable settings to ad-hoc drill-downs while allowing users to schedule distribution or divide the results into subsets for different audiences.
    • Intuitive drag-and-drop or click-based interface that allows users to select data fields and visuals and drag and drop them into report canvas for exploration and storytelling.
    • Data visualization templates that simplify the process of creating dashboards based on user preferences and needs.

    Many organizations take their self-service BI to the next level by enriching it with capabilities in data science and machine learning. Augmented analytics platforms enable users to discover more data, evaluate uncharacterized datasets, and create what-if scenarios. This way, business can react to its evolving needs as quickly as possible, achieving the utmost nimbleness.

    Why organizations fail at self-service BI

    1. Unrealistic expectations

    An organization that just starts throwing data at novice users is facing a serious risk of poor-quality reports. It will be very lucky if these users with different qualifications wind up with non-misinterpreted data without first learning the basics of reporting.

    For instance, a happy user creating their first report on total sales in a historic period might end up with average numbers instead of a SUM, knowing nothing about default aggregations for various measures. Or on the contrary, they can submit inflated numbers. There is also risk of data inconsistency that might affect weighted averages when they need to be displayed with different levels of granularity.

    Further on, a non-power user might rest satisfied with just a casual analysis that has supported their initial beliefs. The confirmation or cherry-picking bias trap is not something an untrained user is necessarily aware of, especially when under pressure to explain a certain pattern.

    2. Reporting chaos

    Self-service BI doesn’t mean zero IT involvement. Letting users toy around with data with no governance from IT usually leads to reporting anarchy.

    With no governance, there could be redundant reports from different users working in silos and delivering the same analysis or reports from different users analyzing the same metrics but using different filters and hence delivering conflicting results. Reports from different departments can rely on different naming conventions for quantity, value, or time or use the same terms but not necessarily the same definition. Multiple versions of the same database, errors in databases that are never fixed, the creation of objects used only once … The list is endless.

    Governance is not something that a data-driven organization can boycott in the world of self-service. No matter how badly a company wants to free users for conducting their own analysis, IT still needs to be involved to maintain high data quality and consistency.

    3. Lack of adoption

    Truth is, not everyone likes to work hard. Most business users just want a simple dashboard that will give them the numbers. Valuable insights, however, often lie levels deeper that go beyond plain business performance analysis.

    Another psychological factor that may hold back an efficient self-service BI is resistance to change. It is not uncommon for many organizations in the early stages of their self-service BI journey to see frustrated business users coming back to BI or IT to request a report as they did in the good old times. Older approaches are safer.

    Unfriendly self-service BI environment setups also might be a problem. What may seem for IT or BI teams to be an easy-to-use tool for collecting and refining results can have an overwhelming and demotivating amount of features for a casual user without technical skills. Pivotal tables and spreadsheets might be dull, but users are quick to revert to them when getting stuck.

    10 tips from ITRex on how to implement self-service BI successfully

    Below is a list of essential takeaways from ITRex experience in building efficient self-service BI tools for both smaller business and large companies, including for the world’s leading retailer with 3 million business users:

    1. Set your self-service BI strategy

    You first need to define what you want to achieve with self-service BI, be it as simple as reducing delayed reports or providing data access organization-wide. Self-service can mean anything to different people, so you should be clear about your project. It’s also important to understand early the scale of implementation, the types of users, their technical proficiency, and your expectations of deliverables.

    2. Keep all stakeholders on board throughout the project

    You should wrap your head around what your stakeholders look for in data and their data-related success metrics. Interview them to collect their functionality, usability, user experience, and other inputs. Then continuously ask them for feedback as you iterate. Apart from making sure you build a relevant self-service BI tool, you will also give your stakeholders a sense of ownership and improve their engagement.

    3. Involve the IT department

    This is also essential. Your IT has all the information on your data environment, existing data sources, data governance controls in place, and data access management. They will help you choose or build a self-service BI solution that is easy to maintain, monitor, and manage in terms of user access and integration of new data sources.

    4. Set up a robust governance

    Self-service BI governance encompasses the following:

    • Data governance policies and procedures to ensure your data is consistent, complete, integral, accurate, and up-to-date. Here you will need to develop a broader data management strategy and adopt leading practices in master and metadata management as part of it.
    • Governance of business metrics to define them uniformly across your self-service BI environment and rule out any deviations.
    • Governance of reports to set a procedure for their quality validation.
    • Data security to define who gets access to what data in your self-service BI and establish data lineage

    5. Select the right tool

    There’s no one-size-fits-all strategy. Your users have different needs and skills your tool should precisely cater for. You will probably need to balance between flexibility and sophistication to allow your users to ask new questions while staying self-reliant. A custom self-service BI solution will make it easier to achieve.

    6. Establish a single source of truth

    A single source of truth is implemented as part of solution architecture to enable decision-making based on the same data. For this, companies build a data warehouse or another kind of central repository that provides a 360-degree view of all their data from multiple sources and makes data access, analysis, enrichment, and protection much simpler and more efficient. It’s worth the investment.

    7. Educate users

    Three types of training programs for end-users are a must: 1. data analysis and visualization, 2) the basics of joining data and building data models, and 3) continuous peer-to-peer training.

    8. Build a community

    It will help a lot if you either establish a center of excellence or have an expert community on Slack or Teams so that your end-users know where to go to fill in gaps in knowledge.

    9. Consider embedding BI specialists in business units

    They will help drive engagement by increasing access to data for users with no analytical background and providing oversight as needed for better-quality reporting.

    10. Start small

    Choose a limited environment for starting your self-service BI project and build from there using an agile approach. This way, you will fix problems early before scaling up.

    Watch this two-minute video of a project from the ITRex portfolio to learn how self-service BI augmented with AI can drive efficiency gains for a large enterprise if done right.

    Author: Terry Wilson

    Source: Datafloq

EasyTagCloud v2.8