4 items tagged "algoritme"

  • 2016 wordt het jaar van de kunstmatige intelligentie

    Artificial-intelligence.jpg-1024x678December is traditiegetrouw de periode van het jaar om terug te blikken en oudjaarsdag is daarbij in het bijzonder natuurlijk de beste dag voor. Bij Numrush kijken we echter liever vooruit. Dat deden we begin december al met ons RUSH Magazine. In deze Gift Guide gaven we cadeautips aan de hand van een aantal thema’s waar we komend jaar veel over gaan horen.Eén onderwerp bleef bewust een beetje onderbelicht in onze Gift Guide. Aan de ene kant omdat het niet iets is wat je cadeau geeft, maar ook omdat het eigenlijk de diverse thema’s overstijgt. Ik heb het over kunstmatige intelligentie. Dat is natuurlijk niets nieuws, er is al ontzettend veel gebeurt op dat vlak, maar komend jaar zal de toepassing hiervan nog verder in een stroomversnelling raken.

  • A new quantum approach to big data

    MIT-Quantum-Big-Data 0From gene mapping to space exploration, humanity continues to generate ever-larger sets of data — far more information than people can actually process, manage, or understand.
    Machine learning systems can help researchers deal with this ever-growing flood of information. Some of the most powerful of these analytical tools are based on a strange branch of geometry called topology, which deals with properties that stay the same even when something is bent and stretched every which way.


    Such topological systems are especially useful for analyzing the connections in complex networks, such as the internal wiring of the brain, the U.S. power grid, or the global interconnections of the Internet. But even with the most powerful modern supercomputers, such problems remain daunting and impractical to solve. Now, a new approach that would use quantum computers to streamline these problems has been developed by researchers at MIT, the University of Waterloo, and the University of Southern California.
    The team describes their theoretical proposal this week in the journal Nature Communications. Seth Lloyd, the paper’s lead author and the Nam P. Suh Professor of Mechanical Engineering, explains that algebraic topology is key to the new method. This approach, he says, helps to reduce the impact of the inevitable distortions that arise every time someone collects data about the real world.


    In a topological description, basic features of the data (How many holes does it have? How are the different parts connected?) are considered the same no matter how much they are stretched, compressed, or distorted. Lloyd explains that it is often these fundamental topological attributes “that are important in trying to reconstruct the underlying patterns in the real world that the data are supposed to represent.”


    It doesn’t matter what kind of dataset is being analyzed, he says. The topological approach to looking for connections and holes “works whether it’s an actual physical hole, or the data represents a logical argument and there’s a hole in the argument. This will find both kinds of holes.”
    Using conventional computers, that approach is too demanding for all but the simplest situations. Topological analysis “represents a crucial way of getting at the significant features of the data, but it’s computationally very expensive,” Lloyd says. “This is where quantum mechanics kicks in.” The new quantum-based approach, he says, could exponentially speed up such calculations.


    Lloyd offers an example to illustrate that potential speedup: If you have a dataset with 300 points, a conventional approach to analyzing all the topological features in that system would require “a computer the size of the universe,” he says. That is, it would take 2300 (two to the 300th power) processing units — approximately the number of all the particles in the universe. In other words, the problem is simply not solvable in that way.
    “That’s where our algorithm kicks in,” he says. Solving the same problem with the new system, using a quantum computer, would require just 300 quantum bits — and a device this size may be achieved in the next few years, according to Lloyd.


    “Our algorithm shows that you don’t need a big quantum computer to kick some serious topological butt,” he says.
    There are many important kinds of huge datasets where the quantum-topological approach could be useful, Lloyd says, for example understanding interconnections in the brain. “By applying topological analysis to datasets gleaned by electroencephalography or functional MRI, you can reveal the complex connectivity and topology of the sequences of firing neurons that underlie our thought processes,” he says.


    The same approach could be used for analyzing many other kinds of information. “You could apply it to the world’s economy, or to social networks, or almost any system that involves long-range transport of goods or information,” says Lloyd, who holds a joint appointment as a professor of physics. But the limits of classical computation have prevented such approaches from being applied before.


    While this work is theoretical, “experimentalists have already contacted us about trying prototypes,” he says. “You could find the topology of simple structures on a very simple quantum computer. People are trying proof-of-concept experiments.”


    Ignacio Cirac, a professor at the Max Planck Institute of Quantum Optics in Munich, Germany, who was not involved in this research, calls it “a very original idea, and I think that it has a great potential.” He adds “I guess that it has to be further developed and adapted to particular problems. In any case, I think that this is top-quality research.”
    The team also included Silvano Garnerone of the University of Waterloo in Ontario, Canada, and Paolo Zanardi of the Center for Quantum Information Science and Technology at the University of Southern California. The work was supported by the Army Research Office, Air Force Office of Scientific Research, Defense Advanced Research Projects Agency, Multidisciplinary University Research Initiative of the Office of Naval Research, and the National Science Foundation.

    Source:MIT news

  • Bol.com: machine learning om vraag en aanbod beter bij elkaar te brengen

    0cd4fbcf0a4f81814f388a75109da149ca643f45Een online marktplaats is een concept dat e-commerce in toenemende mate blijft adopteren. Naast consumer-to-consumer marktplaatsen zoals Marktplaats.nl, zijn er uiteraard ook business-to-consumer marktplaatse waarbij een online platform de vraag van consumenten en het aanbod van leveranciers bij elkaar brengt.

    Sommige marktplaatsen hebben geen eigen assortiment: hun aanbod bestaat voor 100 procent uit aangesloten leveranciers, denk bijvoorbeeld aan Alibaba. Bij Amazon bedraagt het aandeel van eigen producten 50 procent. Ook bol.com heeft een eigen marktplaatsen: ’Verkopen via Bol.com’. Deze draagt bij aan miljoenen extra artikelen in het assortiment van Bol.com.

    Bewaken van contentkwaliteit

    Er komt veel kijken bij het managen van zo’n marktplaats. Het doel is duidelijk: ervoor zorgen dat de vraag en het aanbod zo snel mogelijk bij elkaar komen, zodat de klant direct een aantal producten krijgt aangeboden die voor hem relevant zijn. En met miljoenen klanten aan de ene kant en miljoenen producten van duizenden leveranciers aan de andere kant, is dat natuurlijk een hele klus.

    Jens legt uit: “Het begint bij de standaardisatie van informatie aan zowel de vraag- als de aanbodkant. Bijvoorbeeld, als je als leverancier een cd van Tsjaikovski of een bril van Dolce & Gabbana bij bol.com wilt aanbieden, dan zijn er vele schrijfwijzen mogelijk. Voor een verkoopplatform als ‘Verkopen via bol.com’ is de kwaliteit van de data cruciaal. Het in stand houden van de kwaliteit van de content is dus een van de uitdagingen.

    Aan de andere kant van de transactie zijn er natuurlijk klanten van bol.com die ook allerlei variaties van termen, zoals de namen van merken, in het zoekveld intypen. Daarnaast wordt er in toenemende mate gezocht op generieke termen als ‘cadeau voor huwelijk’ of ‘spullen voor een feestje’.

    Vraag en aanbod bij elkaar brengen

    Naarmate het assortiment groter wordt, wat het geval is, en de klanten steeds ‘generieker’ gaan zoeken, is het steeds uitdagender om een match te maken en relevantie hoog te houden. Door het volume van deze ongestructureerde data en het feit dat ze realtime geanalyseerd moeten worden, kun je die match niet met de hand maken. Je moet hiervoor de data slim kunnen inzetten. En dat is een van de activiteiten waar het customer intelligence team van bol.com, een onderdeel van customer centric selling-afdeling, mee bezig is.

    Jens: “De truc is om het gedrag van klanten op de website te vertalen naar contentverbeteringen. Door de woorden (en woordcombinaties) die klanten gebruiken om artikelen te zoeken en producten die uiteindelijk gekocht zijn te analyseren en met elkaar te matchen, kunnen synoniemen voor desbetreffende producten worden gecreëerd. Dankzij deze synoniemen gaat de relevantie van de zoekresultaten omhoog en help je dus de klant om het product sneller te vinden. Bovendien snijdt het mes snijdt aan twee kanten, omdat tegelijkertijd de kwaliteit van de productcatalogus wordt verbeterd. Denk hierbij aan verfijning van verschillende kleurbeschrijvingen (WIT, Wit, witte, white, etc.).

    Algoritmes worden steeds slimmer

    Het bovenstaande proces verloopt nog semi-automatisch (met terugwerkende kracht), maar de ambitie is om het in de toekomst volledig geautomatiseerd plaats te laten vinden. Om dat te kunnen doen worden er op dit moment stap voor stap machinelearningtechnieken geïmplementeerd. Als eerste is er geïnvesteerd in technologieën om grote volumes van ongestructureerde data zeer snel te kunnen verwerken. Bol.com bezit twee eigen datacenters met tientallen clusters.

    “Nu wordt er volop geëxperimenteerd om deze clusters in te zetten voor het verbeteren van het zoekalgoritme, het verrijken van de content en standaardisatie”, geeft Jens aan. “En dat levert uitdagingen op. Immers, als je doorslaat in standaardisatie, dan kom je in een selffulfilling prophecy terecht. Maar gelukkig nemen de algoritmes het beetje bij beetje over en worden ze steeds slimmer. Nu probeert het algoritme de zoekterm zelf aan een product te koppelen en legt het deze aan diverse interne specialisten voor. Concreet geformuleerd: de specialisten krijgen te zien dat ‘de kans 75 procent is dat de klant dit bedoelt’. Die koppeling wordt vervolgens handmatig gevalideerd. De terugkoppeling van deze specialisten over een voorgestelde verbetering levert belangrijke input voor algoritmes om informatie nog beter te kunnen verwerken. Je ziet dat de algoritmes steeds beter hun werk doen.”

    Toch levert dit voor Jens en zijn team een volgende kwestie op: waar leg je de grens waarbij het algoritme zelf de beslissing kan nemen? Is dat bij 75 procent? Of moet alles onder de 95 procent door menselijk inzicht gevalideerd worden?

    Een betere winkel maken voor onze klanten met big data

    Drie jaar geleden was big data een onderwerp waarover voornamelijk in PowerPoint‑slides gesproken werd. Tegenwoordig hebben vele (grotere) e-commercebedrijven een eigen Hadoop-cluster. Het is de volgende stap om met big data de winkel écht beter te maken voor klanten en bij bol.com wordt daar hard aan gewerkt. In 2010 is bij het bedrijf overgestapt van ‘massamediale’ naar ‘persoonlijk relevante’ campagnevoering, waarbij er in toenemende mate gepoogd wordt om op basis van diverse ‘triggers’ een persoonlijke boodschap aan de klant te bieden, real-time.

    Die triggers (zoals bezochte pagina’s of bekeken producten) wegen steeds zwaarder dan historische gegevens (wie is de klant en wat heeft deze in verleden gekocht).

    “Als je inzicht krijgt in relevante triggers en niet‑relevante weglaat”, stelt Jens, “dan kun je de consument beter bedienen door bijvoorbeeld de meest relevante review te tonen, een aanbieding te doen of een selectie vergelijkbare producten te maken. Op deze manier sluit je beter aan bij de klantreis en is de kans steeds groter dat de klant bij je vind wat hij zoekt.”

    En dat doet bol.com door eerst, op basis van het gedrag op de website, maar ook op basis van de beschikbare voorkeuren van de klant, op zoek te gaan naar de relevante triggers. Nadat deze aan de content zijn gekoppeld, zet bol.com A/B‑testen in om de conversie te analyseren om het uiteindelijk wel of niet definitief door te voeren. Immers, elke wijziging moet resulteren in hogere relevantie.

    Er komen uiteraard verschillende technieken bij kijken om ongestructureerde data te kunnen analyseren en hier zijn zowel slimme algoritmes als menselijk inzicht voor nodig. Jens: “Gelukkig zijn bij ons niet alleen de algoritmes zelflerend, maar ook het bedrijf, dus het proces gaat steeds sneller en beter.”

    Data-scientists

    Outsourcen of alles in-house doen is een strategische beslissing. Bol.com koos voor het laatste. Uiteraard wordt er nog op ad-hocbasis gebruikgemaakt van de kennis uit de markt als dat helpt om processen te versnellen. Data-analisten en data scientists zijn een belangrijk onderdeel van het groeiende customer centric selling team.

    Het verschil spreekt voor zich: data-analisten zijn geschoold in ‘traditionele’ tools als SPSS en SQL en doen analysewerk. Data scientists hebben een grotere conceptuele flexibiliteit en kunnen daarnaast programmeren in onder andere Java, Python en Hive. Uiteraard zijn er doorgroeimogelijkheden voor ambitieuze data-analisten, maar toch wordt het steeds lastiger om data scientists te vinden.

    Hoewel er in de markt keihard gewerkt wordt om het aanbod uit te breiden; hebben we hier vooralsnog met een kleine, selecte groep professionals te maken. Bol.com doet er alles aan om de juiste mensen te werven en op te leiden. Eerst wordt een medewerker met het juiste profiel binnengehaald; denk aan iemand die net is afgestudeerd in artificial intelligence, technische natuurkunde of een andere exacte wetenschap. Vervolgens wordt deze kersverse data scientist onder de vleugels van een van de ervaren experts uit het opleidingsteam van bol.com genomen. Training in computertalen is hier een belangrijk onderdeel van en verder is het vooral learning-by-doing.

    Mens versus machine

    Naarmate de algoritmes steeds slimmer worden en artificial‑intelligencetechnologieën steeds geavanceerder, zou je denken dat het tekort aan data scientists tijdelijk is: de computers nemen het over.

    Dat is volgens Jens niet het geval: “Je zult altijd behoefte blijven houden aan menselijk inzicht. Alleen, omdat de machines steeds meer routinematig en gestandaardiseerd analysewerk overnemen, kun je steeds meer gaan doen. Bijvoorbeeld, niet de top 10.000 zoektermen verwerken, maar allemaal. Feitelijk kun je veel meer de diepte én de breedte in. En dus is de impact van jouw werk op de organisatie vele malen groter. Het resultaat? De klant wordt beter geholpen en hij bespaart tijd omdat hij steeds relevantere informatie krijgt en daarom meer engaged is. En brengt ons ook steeds verder in onze ambitie om onze klanten de beste winkel te bieden die er bestaat.”

    Klik hiervoor het hele rapport.

    Source: Marketingfacts

  • Kunstmatige intelligentie leert autorijden met GTA

    Zelfrijdende auto toekomst-geschiedenis

    Wie ooit Grand Theft Auto (GTA) heeft gespeeld, weet dat de game niet is gemaakt om je aan de regels te houden. Toch kan GTA volgens onderzoekers van de Technische Universiteit Darmstadt een kunstmatige intelligentie helpen om te leren door het verkeer te rijden. Dat schrijft het universiteitsmagazine van MIT, Technology Review.

    Onderzoekers gebruiken het spel daarom ook om algoritmes te leren hoe ze zich in het verkeer moeten gedragen. Volgens de universiteit is de realistische wereld van computerspelletjes zoals GTA heel erg geschikt om de echte wereld beter te begrijpen. Virtuele werelden worden al gebruikt om data aan algoritmes te geven, maar door games te gebruiken hoeven die werelden niet specifiek gecreëerd te worden.

    Het leren rijden in Grand Theft Auto werkt ongeveer gelijk als in de echte wereld. Voor zelfrijdende auto’s worden objecten en mensen, zoals voetgangers, gelabeld. Die labels kunnen aan het algoritme, waardoor die in staat is om in zowel de echte wereld als de videogame onderscheid te maken tussen verschillende voorwerpen of medeweggebruikers.

    Het is niet de eerste keer dat kunstmatige intelligentie wordt ingezet om computerspelletjes te spelen. Zo werkte onderzoekers al aan een slimme Mario en wordt Minecraft voor eenzelfde doeleinde gebruikt als GTA. Microsoft gebruikt de virtuele wereld namelijk om personages te leren hoe ze zich door de omgeving moeten manoeuvreren. De kennis die wordt opgedaan kan later gebruikt worden om robots in de echte wereld soortgelijke obstakels te laten overwinnen.

    Bron: numrush.nl, 12 september 2016

     

EasyTagCloud v2.8